skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yang, Leon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We introduce the scheduler subversion problem, where lock usage patterns determine which thread runs, thereby subverting CPU scheduling goals. To mitigate this problem, we introduce Scheduler-Cooperative Locks (SCLs), a new family of locking primitives that controls lock usage and thus aligns with system-wide scheduling goals; our initial work focuses on proportional share schedulers. Unlike existing locks, SCLs provide an equal (or proportional) time window called lock opportunity within which each thread can acquire the lock. We design and implement three different scheduler-cooperative locks that work well with proportional-share schedulers: a user-level mutex lock (u-SCL), a reader-writer lock (RWSCL), and a simplified kernel implementation (k-SCL). We demonstrate the effectiveness of SCLs in two user-space applications (UpScaleDB and KyotoCabinet) and the Linux kernel. In all three cases, regardless of lock usage patterns, SCLs ensure that each thread receives proportional lock allocations that match those of the CPU scheduler. Using microbenchmarks, we show that SCLs are efficient and achieve high performance with minimal overhead under extreme workloads. 
    more » « less